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Abstract 

This paper is concerned with finding improved 
methods of reasoning for use in rule-based 
systems that perform diagnosis in general and 
situation assessment in particular. It is argued 
that, because the rules used in rule-based systems 
typically have exceptions, the rules must be 
interpreted probabilistically. Thus, if a rule If A 
then B has exceptions, then what the rule really 
means is that the conditional probability of B 
given A is close to one. A rule-inference criterion 
that makes use of second-order probability 
concepts is advocated. Interestingly, this inference 
criterion is equivalent to some non-probabilistic 
inference criteria. The paper expounds a scheme 
for constructing situation-assessment systems 
that could be used as either decision aids or as 
reasoning components of computer generated 
forces. 

1. Introduction 

My goal in writing this paper is to give a non- 
technical summary of my work on the logic of 
"high conditional-probability assertions" and to 
discuss how that logic may be used in developing 
rule-based systems for situation assessment. In 
this paper, I have used terminology and given 
explanations that are designed to convey basic 
intuitions rather than to be technically precise. 
Those readers who would like to see a technically 
precise formulation of this work with full 
technical details may consult my papers [Bamber, 
1996; Bamber, to appear]. 

As its title indicates, this paper discusses How" 
probability theory may be used to help in the 
design of rule-based systems. The specific type of 
rule-based system that this paper is concerned 
with are those that perform diagnosis. 

By diagnosis is meant the process of using 
known properties of an entity to deduce new {i.e., 
previously unknown) properties of that entity. 
For example, in medical diagnosis, the entity to be 
diagnosed is a patient, the entity's known 
properties are symptoms, and the new properties 
to be deduced are medical conditions. As another 
example, in situation assessment, the entity to be 
diagnosed might be a particular ship, its known 
properties might be its speed and the frequency of 
its radar, and the new property to be deduced 
might be the ship's classification. Thus, diagnostic 
rule-based systems use known properties to 
deduce new properties. They are designed to ask 
questions of the type: If an entity has properties 
A, B, C, etc., will it also have property D? 

(Diagnostic rule-based systems should be 
distinguished from action evaluation/planning 
rule-based systems that are designed to either 
evaluate the consequences/utility of actions or to 
plan actions. Such systems are beyond the scope 
of this paper.) 

Because situation assessment is a form of 
diagnosis, rule-based systems for situation 
assessment are a potential application for the 
work presented in this paper. Such situation- 
assessment systems would be useful either (a) as 
a decision aid for leaders of real-life military forces 



or (b) as a simulation of the situation assessment 
performed by computer generated forces. 

2.   Propositional   Logic   as   a   Method   for 
Reasoning with Rules 

In diagnostic rule-based systems, the rules take 
the form If A then B, where A and B each denote 
properties of the entity to be diagnosed. How 
ought we to reason with rules that have this form? 
The obvious answer would appear to be that we 
should use propositional logic (also known as 
sentential logic). After all propositional logic 
[Enderton, 1972, Chapter 1] is designed for 
reasoning with statements having various forms, 
among them being the form: If A then B. And it is 
widely regarded as being the correct logic to use 
for reasoning with such statements. 

Terminology and notation. In the following, it 
will be convenient to say that the property A is 
true or holds true for an entity if the entity 
possesses property A. Given the properties A and 
B, define ~A to be the property that holds true if 
and only if A does not hold true. Define A&B to be 
the property that holds true if and only if A and B 
both hold true. Define AMB to be the property that 
holds true if and only if either A or B holds true. 
The rule If A then B will be denoted A=>B. 

When propositional logic is used to reason with 
rules, the symbol "=>" is interpreted as being the 
material-conditional connective. Recall that this 
connective is defined in such a way that A=>B is 
equivalent to ~A\IB. In other words, the rule If A 
then B is considered to be equivalent to Either not 
AorB. 

(Later in this paper, an alternative interpretation 
of the rule If A then B will be considered. Because 
the rule will still be denoted A=>B, it will be 
necessary to reinterpret the symbol "=>".) 

2.1 A Problem Caused by Exceptions: Rare 
Errors 

There is a problem with using propositional 
logic to reason with the rules that are found in 
rule-based systems. That problem is that 
propositional logic was designed to reason with 
statements that have no exceptions. The point of 
view taken in propositional logic is that, in order 
to justifiably assert a statement, that statement 
must always be true. One is not justified in 
asserting the statement If A then B if, when the 
property A holds, the property B occasionally 
does not hold. In other words, if a statement can 
have exceptions, then that statement should not be 
asserted. Thus, propositional logic is intended to 
be applied only to statements that have no 
exceptions. 

However, the rules in rule-based systems 
frequently have exceptions. Strictly speaking, one 
should not apply propositional logic to such rules. 

But, might it not be permissible to ignore the 
occasional exception, to pretend that the rules 
contained in rule-based systems have no 
exceptions, and then to apply propositional logic? 

This seems like it might be a reasonable 
procedure. Suppose that the rule If A then B has 
occasional exceptions but, nevertheless, we adopt 
the policy of applying this rule whenever we learn 
that A is true of an entity. Thus, whenever we 
learn that ,4 is true, we will conclude that B is true. 
Most of the time when we conclude that B is true 
we will be correct. Occasionally, we will 
encounter an exception to the rule and our 
conclusion that B is true will be wrong. Shouldn't 
we be happy with this policy? Most of our 
conclusions are correct but an occasional 
conclusion is wrong. Isn't this better than a policy 
that never allowed us to reach any conclusion at 
all? 



Putting the matter somewhat differently: If we 
employ rules that have exceptions, must we not 
be tolerant of rare errors in our conclusions? If we 
are not tolerant of rare errors, then we should not 
employ rules that have exceptions because they 
will inevitably cause us to occasionally reach 
incorrect conclusions. 

Based upon the foregoing considerations, it 
might appear that, if we are tolerant of rare errors 
in our conclusions, then there are no further 
problems with applying propositional logic to 
rules with exceptions. Sadly, this is not the case. 

2.2 A Worse  Problem:  Absurd Conclusions 
that Are Always Wrong 

The policy of ignoring exceptions when 
applying propositional logic can result in 
conclusions that are more than just occasionally 
wrong. Certain of our conclusions will be absurd 
because they are always wrong. Here is an 
example. 

We know that aircraft carriers are able to launch 
planes. This knowledge may be expressed in the 
form of a rule: If aircraft carrier then able to 
launch planes. This rule is denoted A=>L, where A 
denotes the property of being an aircraft carrier, 
and L denotes the property of being able to launch 
planes. Since we are using propositional logic to 
reason with rules, the symbol "=>" is interpreted 
as being the material-conditional connective. 

words, propositional logic concludes that aircraft 
carriers with broken catapults are destroyers. 

An informal explanation of how propositional 
logic arrives at this conclusion is as follows. As 
mentioned, propositional logic is not designed to 
deal with statements that have exceptions. In 
effect, propositional logic takes the position that 
exceptions do not exist. Since carriers with broken 
catapults would be an exception to the rule that 
carriers are able to launch planes, propositional 
logic concludes that such carriers do not exist and, 
hence, that every one of them (there being none) is 
a destroyer.1 

It must be stressed that the above example does 
not show that there is something wrong with 
propositional logic. The problem is that we have 
used propositional logic to do something that it 
was not designed to do, namely, to reason with 
statements that can have exceptions. If we restrict 
our use of propositional logic to what it is 
designed to do, namely, to reason with statements 
that have no exceptions, then it works flawlessly. 

In summary, when propositional logic is 
applied to rules that have exceptions, some of its 
conclusions are absurd (although they would be 
correct if the rules had no exceptions). Thus, 
propositional logic produces "too many" 
conclusions when applied to rules that have 
exceptions. We need a method of reasoning that 
produces fewer conclusions. 

But, of course, the rule If aircraft carrier then 
able to launch planes has exceptions, one being 
that aircraft carriers with broken catapults cannot 
launch planes. This exception may be written as a 
rule in its own right: A&B=>~L. Here B denotes 
the property of having a broken catapult. 

2.3 Censored Propositional Logic 

Although propositional logic produces "too 
many" conclusions, it has continued to be 
employed in rule-based systems, but its 
conclusions have been "censored". 

Let D be the property of being a destroyer. 
Then, from A=>L and A&B=>~L, propositional 
logic derives the conclusion A8cB=>D. In other 

1 There is nothing special about destroyers here. Using 
propositional logic, it may also be concluded that aircraft 
carriers with broken catapults are Marine battalions. 



In diagnostic rule-based systems that reason by 
forward chaining [Winston, 1984, pp. 166-168; 
Parsaye and Chignell, 1988, pp. 271-273], this 
"censorship" is done as follows. At each stage of 
the system's reasoning, the system possesses a 
collection of properties known (or, more 
accurately, believed) to hold true for the entity 
being diagnosed. Each of these properties was 
either told to the system or was deduced by the 
system. The system then checks to see which of 
its rules is applicable to the current collection of 
properties. (A rule If A then B is said to be 
applicable if A is contained in the current 
collection of properties.) Typically, at any stage 
of reasoning, multiple rules will be applicable. The 
system will select one of the applicable rules. The 
selected rule will then be applied. In other words, 
if the rule If A then B is applicable and has been 
selected, then the conclusion B will be deduced 
from the rule and then B will be added to the 
collection of properties. 

The process of selecting one rule from multiple 
applicable rules is called conflict resolution. A 
variety of different strategies for conflict 
resolution have been used in rule-based systems 
[Winston, 1984, pp. 170-171; Parsaye and 
Chignell, 1988, pp. 273-275]. 

Conflict resolution is essentially a way of 
censoring the conclusions that could be drawn 
using propositional logic. Suppose that, at a given 
stage of reasoning, two rules are applicable: If A 
then B and If C then D. Since both rules are 
applicable, the current collection of properties 
contains both A and C. Hence, applying 
propositional logic, it would be legitimate to 
deduce both B and D. However, the process of 
conflict resolution will allow only one of the two 
rules to be applied. Hence, either B or D but not 
both will be added to the collection of properties. 
Thus, one conclusion deducible from 
propositional logic will added to the collection of 
properties and the other will be censored. 
(However, the censorship may be only 
temporary.  At a later stage of reasoning, the 

previously censored rule may be selected and 
applied.) 

In part, conflict resolution strategies are 
designed with the hope that they will avoid the 
deduction of irrelevant properties and, thus, will 
keep the inference process moving in a fruitful 
direction. 

In addition, by censoring the conclusions that 
would otherwise be deduced, conflict resolution 
has the effect of reducing the likelihood that pairs 
of contradictory conclusions will be deduced. One 
strategy often used in conflict resolution is to 
apply the most specific rule. For example, 
suppose that the rules (0 If aircraft carrier then 
able to launch planes and (if) If aircraft carrier 
and has broken catapult then not able to launch 
planes are both applicable at the same time. If 
both rules were applied, we would obtain a pair of 
contradictory conclusions: able to launch planes 
and not able to launch planes. However, the 
conflict resolution strategy based upon specificity 
will prevent both rules from being applied. Rule 
(if) is considered to be more specific than Rule (/) 
because it is only applicable when Rule (/) is 
applicable but may be inapplicable when Rule (i) 
is applicable. Because Rule (if) is more specific, it 
will be applied and Rule (f) will not be applied 
and, hence, a potential contradiction will be 
avoided. 

As mentioned, a variety of conflict-resolution 
strategies have been used in rule-based systems. 
Moreover, the different strategies produce 
different results. So, which is the "correct" 
conflict-resolution strategy to use? Unfortunately, 
this question can't be answered because there is 
no theory of conflict resolution. So, other than 
intuition or empirical results, we have no basis for 
preferring one conflict-resolution strategy over 
another. 

It would be desirable to improve this situation. 
What we need in rule-based systems is a method 



of reasoning that is based upon principles that are 
sound and well-understood. 

3. Reinterpretation of Rules:   Assertions   of 
High Conditional Probability 

We have seen that, because the rules used in 
rule-based systems typically have exceptions, 
those rules cannot be interpreted as statements in 
propositional logic. Specifically, when we 
interpret each rule If A then B (symbolized A=>B) 
as being equivalent to the material conditional 
Either not A or B (symbolized ~AVB), then 
unreasonable and/or contradictory conclusions 
may be deduced. This problem arises because we 
have pretended that the rules don't have 
exceptions when, in fact, they do. 

This suggests that we should give up the 
pretense that the rules don't have exceptions. 
Instead we should interpret the rules in a way that 
frankly acknowledges the possibility of 
exceptions. 

One way to acknowledge the possibility of 
exceptions would be to stop interpreting the 
symbol "=>" as denoting the material conditional 
connective. Instead, we would give each rule A=>B 
an interpretation that cannot be expressed within 
propositional logic. Specifically, a rule A=>B 
would be interpreted as an assertion of high 
conditional probability, that is, as meaning that the 
conditional probability of B given A is close to 
one.2 In other words, when A is true, B will be 
true nearly all the time, but perhaps not always; 
thus there may be rare exceptions where A is true 
but B is not. 

2 What is meant by "close to one"? This question cannot be 
given a precise answer; it depends upon our tolerance for error. 
As a rule of thumb: If exceptions to a rule A=>B are sufficiently 
rare that someone is willing to include that rule in a traditional 
rule-based system, then evidently the conditional probability 
of B given A must be "close to one" in their judgment. 

Terminology. Let a rule A=>B be said to be 
accurate if the conditional probability of B given A 
is indeed close to one. 

3.1  How to Do  Diagnosis   Under the   New 
Interpretation of Rules 

Suppose that we want to perform a diagnosis. 
Imagine that A\, ..., A„ summarize the known 
properties of the entity to be diagnosed. What we 
want to ascertain is whether B also holds true. So, 
the question we are faced with is: Given that A\, 
..., A„ summarize the known properties of the 
entity, are we justified in concluding that that 
entity also possesses property Bl 

Presumably, we are tolerant of rare errors in our 
conclusions because, if we were not tolerant of 
rare errors, then we should not employ rules that 
have exceptions. On the other hand, we are 
presumably not tolerant of frequent errors in our 
conclusions because, if we were tolerant of 
frequent errors, then we might as well answer 
questions by flipping a coin. 

Given these tolerances for error, if Au ..., A„ 
summarize the known properties of the entity to 
be diagnosed, then we should conclude that the 
entity has property B if and only if we believe 
that the conditional probability of B given Au ..., 
A„ is close to one. This is equivalent to saying that 
we should infer the property B from the summary 
of known properties Ah ..., A„ if and only if we 
believe that {A\&.. .&A„)=>B is an accurate rule. 

When ought we to believe that (A\&.. .ScA„)=>B 
is an accurate rule? Presumably, if we are 
constructing a rule-based system, then we have in 
our possession a collection of all the rules that are 
empirically known to be accurate. So, obviously, 
if we find (Ai&...8cA„)=>B in our collection of 
empirically known rules, then we should believe it 
to be accurate. More generally, if we can deduce 
(Ai&...&A„)=>B from the rules in our collection, 
then we should believe it to be accurate. However, 



if we cannot deduce (Ai&...&An)=>B from our 
collection of empirically known rules, then there is 
no reason why we should believe it to be accurate. 

In summary, then, we should infer the property 
B from the summary of known properties Ah ..., 
An if and only if we can infer the rule 
(Ai&...ScAn)=>B from the collection of 
empirically known rules. 

3.2 Two Types of Reasoning Involved in 
Diagnosis 

The above discussion shows that, to do 
diagnosis, we need to do two distinct types of 
reasoning: property-rule-property reasoning and 
rule-rule reasoning. Property-rule-property 
reasoning consists of inferring a property B from a 
summary of known properties A\, ...,A„ together 
with the rule (A\8L. . .&An)=>B. Rule-rule reasoning 
consists of inferring a rule from a collection of 
known rules. 

3.2.1 Property-Rule-Property Reasoning 

Because rules may have exceptions, the 
conclusions reached in property-rule-property 
reasoning are not guaranteed to be correct. 

Property-rule-property reasoning may be said 
to be nonmonotonic in the properties. Loosely 
speaking, this means that learning new properties 
of an entity may cause us to withdraw previous 
conclusions about that entity. Here is an example. 
Suppose that the known rules are A=>L and 
A8cB=>~L. If J is the only known property of an 
entity, then we may apply the rule A=>L to 
conclude that the entity has property L. On the 
other hand, if A and B are the known properties of 
the entity, then we may not apply the rule A=>L 
because A does not summarize all of the entity's 
known properties. Instead, we must apply the 
rule A&B=>~L and conclude that the entity does 
not have the property L. Thus, if A is the only 
known property of the entity, we conclude that 
the entity has property L. (This conclusion is 

tentative—rather than known for certain—because 
the rule A=>L may have exceptions.) If we 
subsequently learn that the entity also has the 
property B, then we withdraw our tentative 
conclusion that the entity has property L. 

We shall shortly turn to a discussion of logics 
for rule-rule reasoning. But, before we do that, we 
will consider what rule-based systems for 
situation assessment should look like. 

3.3 Rule-Based Systems for Situation 
Assessment 

When rules are interpreted as being assertions of 
high conditional probability, then a rule-based 
system for situation assessment could be 
constructed as follows. 

The system would have an entity-property 
base and a rule base. The entity-property base 
would contain information about each of the 
entities involved in the current situation; this 
information would come in the form of entity- 
property pairs. For example, in one pair, the 
property might be aircraft; this would indicate 
that the entity was an aircraft. The entity- 
property base would change continually as the 
situation changed. (Consideration of the 
mechanisms by which entity-property pairs are 
placed in the entity base and removed therefrom is 
beyond the scope of this paper.) 

The system's rule base would contain all the 
known rules about entity properties. The contents 
of the rule base would be essentially constant, 
changing only with software upgrades. 

The system would carry out deductions in the 
following manner. Suppose that it is desired to 
ascertain whether a particular entity, which will be 
termed the entity of interest, is a destroyer. (Let 
the property of being a destroyer be denoted D.) 
Then all the entity-property pairs involving the 
entity of interest would be retrieved from the 



entity-property base. Suppose that is found that 
the properties possessed by the entity of interest 
are Ax, ..., A„. If the rule (Ai&...&A„)=>D is 
deduced from the rules in the rule base, then it is 
concluded that the entity of interest is a destroyer. 
On the other hand, if the rule (A\8c.. .&An)=>~D is 
deduced from the rule base, then it is concluded 
that the entity of interest is not a destroyer. If 
neither rule can be deduced from the rule base, 
then no conclusion is reached concerning whether 
or not the entity of interest is a destroyer. 

As is evident from the above discussion, a logic 
for deducing new rules from already-known rules 
is the key to rule-based situation assessment. 

4. Deducing Rules from Rules 

We need a logic for deducing rules from rules. 
Because we are interpreting rules as being 
assertions of high conditional probability, that 
means that we need a logic of high conditional- 
probability assertions. 

4.1 Adams' Approach to Rule-Rule Reasoning 

Ernest Adams [Adams, 1966, 1975] developed 
a logic of conditional statements. This logic may 
also be interpreted as a logic of high conditional- 
probability assertions [Adams, 1986, 1998]. So, 
because we are interpreting rules as being 
assertions of high conditional probability, Adams' 
logic may be used for rule-rule reasoning. 

In Adams' logic, a rule A =>L is interpreted as 
meaning that the conditional probability of L given 
A is close to one. Thus, property A is almost 
always accompanied by the property L but 
exceptions are possible. In this logic, a model is 
defined to be a probability measure over the 
language used to express properties of entities. 

Adams defined what it meant for a set of rules 
to be consistent. A loose intuitive explanation of 
Adams' formal definition may be given as follows. 

A model (i.e., probability measure) satisfies a rule 
A =>L if and only if the conditional probability of 
L given A is "close to one". A set of rules is 
consistent if, no matter how stringently we 
interpret "close to one", there exists a model that 
satisfies every rule in the set.3 After formulating 
his definition of consistency, Adams showed how 
to ascertain whether a set of rules is consistent. 

Adams also defined what it meant for a rule to 
follow from (i.e., be implied by) a set of rules. In 
formulating this definition, Adams used a criterion 
for reasoning that Bamber later named the 
Criterion of Surety [Bamber, to appear]. A loose 
intuitive explanation of this criterion is as follows. 
A conclusion rule follows from a set of premise 
rules if and only if every model that satisfies the 
premises also satisfies the conclusion. 
Equivalently, a conclusion rule C=>D follows 
from the premise rules Ai=>Bh ..., An=>Bn if and 
only if the conditional probabilities Vr(B\\A{), ..., 
?r(B„\A„) all being close to one guarantees that the 
conditional probability Pr(D|Q will also be close 
to one.4 After formulating his definition of 
implication, Adams showed how to ascertain 
whether a conclusion rule is implied by a 
collection of premise rules. 

4.1.1 Disturbing Results 

Adams' results are disturbing in that they cast 
doubt on reasoning procedures used in rule-based 
systems. For example, suppose that it is desired 
to diagnose an entity having properties A and P. 
Suppose also that the rules A=>B and P=>Q are in 
the rule base. (Assume that A, B, P, and Q are 
distinct primitive properties.) In rule-based 
systems, it is allowable (unless prevented by the 
system's conflict resolution strategy) to apply the 

3 To be precise: A\=>B\, ..., A„=>B„ are consistent if and only if, 
for every e>0, there exists a probability measure Pr such that 
Pr(S,|^i), ..., Pr(B„\A„) are all at least 1-e. 
4 To be precise: C=>D follows irom^i=>5i, ..., A„=>B„ if and 
only if, for every e>0, there exists a d>0 such that, for all 
probability measures Pr, if Pr(5i|^i), ..., Vr(B„\An) are all at least 
\-d, then Pr(D|C) is at least 1-e. 



first rule to conclude that the entity has property 
B and later to apply the second rule to conclude 
that the entity has property Q. However, Adams' 
results show that, according to the Criterion of 
Surety, it is not valid to use the rules A=>B and 
P=>Q to conclude A&P=>B&Q. (This is because 
it is possible for the conditional probability 
Vx(B8cQ\A8cP) to be far from one even though the 
conditional probabilities Pr(B\A) and Pr(g|F) are 
both close to one.) In other words, the rule 
A&P=>B&Q can be inaccurate even though the 
rules A=>B and P=>Q are both accurate. But, if 
the rule A&P=>B&Q is inaccurate, then there is no 
justification for concluding that an entity having 
properties A and P should also have properties B 
andQ. 

4.2 Bamber's Approach to Rule-Rule 
Reasoning 

One possible reaction to the above example is to 
say that, although it may be theoretically possible 
for the rule A&P=>B&Q to be inaccurate when the 
rules A=>B and P=>Q are accurate, surely such 
situations are highly unusual. Moreover, if we are 
tolerant of rare errors in property-rule-property 
reasoning, then shouldn't we also be tolerant of 
rare errors in rule-rule reasoning? If so, then we 
ought to be willing to infer the rule A8cP=>B8cQ 
from the rules A=>B and P=>Q even though that 
inference may sometimes be in error. 

This is not an unreasonable position. The 
difficulty with it, of course, is that the errors 
hypothesized to be rare (and, thus, tolerable) have 
not been demonstrated to actually be rare. 

Bamber sought to solve this problem [Bamber, 
1996; Bamber, to appear]. His work aimed at 
developing a logic for rule-rule reasoning in which 
rules derived as conclusions would be accurate 
nearly all the time but might be inaccurate on rare 
occasions. As previously, a model was defined to 
be a probability measure over the language used to 
express properties of entities. In addition, a 
second-order probability  measure  over models 

was defined.5 In Bamber's approach, rather than 
deriving conclusions in accordance with the 
Criterion of Surety, conclusions were derived in 
accordance with the Criterion of Near Surety. 
Loosely put, this criterion states that a conclusion 
rule follows from a set of premise rules if and only 
if nearly every model that satisfies the premises 
also satisfies the conclusion.6 Equivalently, the 
conclusion rule C=>D follows from the premise 
rules Ax=>Bh ...,A„=>B„ if and only if ?v(D\Q is 
close to one in nearly every model in which 
Pr^l^O, ..., ?r(B„\A„) are close to one.7 Thus, 
the goal is not to infer conclusion rules that are 
sure to be accurate but rather to infer conclusion 
rules that are nearly sure to be accurate. 

In summary, Bamber proposed a logic for rule- 
rule reasoning that was identical to Adams' logic 
except that the Criterion of Surety was replaced 
by the Criterion of Near Surety. 

4.2.1 Comparison of the Two Criteria for Rule-Rule 
Reasoning 

Recall the example that motivated consideration 
of the Criterion of Near Surety. It was found that, 
in Adams' logic (which employs the Criterion of 
Surety), the rule A&P=>B&Q does not follow 
from the rules A=>B and P=>Q. However when 

This was done as follows. Suppose that the language used to 
express properties contains k primitive properties. Hence, this 
language has 2k atoms. Hence, any model may be represented by 
a 2 -dimensional vector that specifies the probability of each 
atom. The second-order probability measure was defined to be 
the uniform distribution over all model vectors. 
6 Bacchus et al. [Bacchus et al, 1992, 1996; Grove et al, 1994] 
investigated the Criterion of Near Surety using different types 
of models: (a) A random-world model was a first-order 
predicate calculus model, (b) A random-structure model was a 
collection of random-world models that were equivalent under 
permutation of domain elements. Bacchus et al. investigated the 
former approach much more deeply than the latter. The latter 
approach looks like it might yield results similar to those of 
Bamber, but this matter has not been definitively investigated. 
7 To be precise: Let Prrand0m denote a random model (i.e., a model 
selected at random from the second-order probability 
distribution). Then C=>D follows from A\=>BU ..., A„=>B„ if 
and only if, for every p>0 and every e>0, there exists a d>0 such 
that, \-p is less than or equal to the conditional second-order 
probability that Prrandoni(ö|C) is at least 1-e given that 
PfrandomCBil^i),..., Prrandom(5„|^„) are all at least \-d. 



the Criterion of Near Surety is substituted for the 
Criterion of Surety, it is found that the rule 
A8cP=>B&Q does indeed follow from the rules 
A=>B and P=>Q. 

Adams' logic for rule-rule reasoning may be said 
to be monotonic in the rules. This means that any 
conclusion that follows from a set of premise rules 
will still follow if the set of premise rules is 
enlarged. That is: If the conclusion C=>D follows 
from the premises Ai=>Bh ..., A„=>Bn, then 
C=>D will also follow from the enlarged set of 
premises A i=>Bh ..., A=>Bm Ar&x=>Br&x. 

On the other hand, if the Criterion of Near 
Surety is substituted for the Criterion of Surety, 
then the resulting logic is not monotonic in the 
rules. Here is a trivial example. Suppose that A, B, 
and C are primitive properties. Then the 
conclusion A&B=>C follows from the premise 
A=>C. Note however that it is possible for the 
conditional probability Pr(C\A) to be close to one 
and for the conditional probability ?r(QA&B) to 
be close to zero. Hence, the two rules A=>C and 
A&B=>~C form a consistent set of premises. 
Obviously, from these premises, the conclusion 
A&B=>C no longer follows although it did follow 
from the single premise A=>C. 

4.2.2 Choosing Between the Two Criteria for Rule-Rule 
Reasoning 

Adams' and Bamber's approaches to rule-rule 
reasoning are essentially identical except that the 
former employs the Criterion of Surety whereas 
the latter employs the Criterion of Near Surety. 

Which of these two criteria for rule-rule 
reasoning is more appropriate for use in rule-based 
systems? The Criterion of Near Surety yields all 
of the conclusions yielded by the Criterion of 
Surety plus some additional conclusions. 
However, we pay a price for these additional 
conclusions. Although the additional conclusions 
will nearly always be accurate, they will be 
inaccurate on rare occasions.   So,  in  choosing 

between the two reasoning criteria, we are 
choosing between fewer conclusions all of which 
are guaranteed to be accurate versus more 
conclusions some of which on rare occasions will 
be inaccurate. In short, we are faced with a trade- 
off. 

Which side of this trade-off is preferred should 
depend upon our tolerance for rare errors. 
Evidently, in many rule-based systems, we do 
find it tolerable that the system makes rare errors. 
After all, if we weren't tolerant of rare errors, then 
we should never employ rules that have 
exceptions. 

So, because we are tolerant of rule-based 
systems that produce rare errors, it seems 
reasonable that we should employ the Criterion of 
Near Surety in such systems. 

Note that, in choosing between the two 
reasoning criteria, it is not a matter of deciding 
which criterion is "correct". Rather, it is a matter 
of deciding which criterion is more suitable for the 
task at hand. 

4.3 Similarity of Bamber's Logic to Other 
Logics 

Bamber showed [Bamber, to appear] that his 
logic is formally identical8 to the logic named 
Rational Closure [Lehmann and Magidor, 1992]. 
Bamber also showed that his logic has a close 
relationship to the logic named System-Z [Pearl, 
1990]. The latter may be regarded as a bundling of 
a logic for property-rule-property reasoning 
together with a logic for rule-rule reasoning. 
Considered at a formal level, the rule-rule 
component of System-Z, is almost identical to 

When two logics are said to be formally identical, it means 
that, as systems for reasoning with uninterpreted symbol 
strings, the two logics are identical. Thus, two logics can be 
formally identical even though the developers of the two logics 
interpret the meaning of the same symbol strings differently. 



Bamber's logic.9 Efficient methods for carrying 
out deductions in these logics are known. 

The formal identity/similarity between these 
three logics is interesting in that they were based 
upon different rationales. Thus, Bamber's logic 
was based upon the Criterion of Near Surety. On 
the other hand, System-Z may be interpreted as 
being based upon a principle of open-mindedness 
which may be loosely expressed: Don't doubt any 
possibility any more than the known rules compel 
one to do so [Bamber, to appear]. 

The fact that different rationales all result in the 
essentially the same logic is encouraging in that 
multiple rationales provide more convincing 
justification for using a logic than does a single 
rationale. 

5. Summary 

The following points were argued: Because the 
rules in diagnostic rule-based systems typically 
have exceptions, propositional logic is not an 
appropriate method for reasoning within 
diagnostic rule-based systems. Instead, rules 
should be interpreted probabilistically. That is, 
they should be regarded as assertions of high- 
conditional probability. Diagnostic reasoning 
involves (a) property-rule-property reasoning in 
which properties are inferred jointly from other 
properties and from rules and (b) rule-rule 
reasoning in which rules are inferred from rules. 
Rule-rule reasoning should be based upon the 
Criterion of Near Surety, which says that a 
conclusion rule follows from a set of premise rules 
if and only nearly every model of the premises is a 
model of the conclusion. In order to give a precise 

9 The difference between the two logics has to do with a minor 
issue, namely, the consistency of rules involving impossible 
properties. For example, let U denote the property of being a 
unicorn and let W denote the property of being white. In 
System-Z, the rule U=>W&~W is regarded as being self- 
inconsistent because nothing that exists can be both white and 
non-white. In contrast, in Bamber's logic, U=>W8i~W is 
regarded as being self-consistent and as expressing the concept 
that unicorns are non-existent. 

formulation of this criterion, it is necessary to 
employ a second-order probability measure over 
models. The logic based upon the Criterion of 
Near Surety is formally similar or identical to 
logics based upon other rationales. 

In the course of the paper, potential 
applications of this work were discussed. A 
scheme for constructing rule-based systems for 
situation assessment was expounded. Such 
situation-assessment systems would be useful 
either (a) as a decision aid for leaders of real-life 
military forces or (b) as a simulation of the 
situation assessment performed by computer 
generated forces. 
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